CONTENTS

RESEARCH

Estimated Blood Loss in Open Heart Surgery
(Taksiran Kehilangan Darah di Bedah Jantung Terbuka)
Riesti Ekasanti, Rachmawati Muhiddin, Mansyur Arif .. 205–207

Error Rate of Disc Diffusion Method in Ceftazidime/Cefotaxime Susceptibility Test on Clinical Isolates of Klebsiella Pneumoniae
(Laju Kesalahan Uji Kepekaan Ceftazidim/Cefotaxime Metode Difusi Cakram pada Klebsiella Pneumoniae)
Luz Maria GBW, Osman Sianipar, Usi Sukorini .. 208–211

Correlation of Monocyte Count, MLR and NLCR with Presepsin Level in SIRS
(Hubungan Jumlah Monosit, MLR dan NLCR dengan Kadar Presepsin pada SIRS)
Nurmalia PS, N. Suci W, Imam BW ... 212–218

Role of Signal Transduction ERK1/2 on the Proliferation of Endothelial Progenitor Cell (EPC) of Patients with Stable Angina Pectoris Induced by Growth Factors
(Peran Transduksi Sinyal ERK1/2 terhadap Proliferasi Endothelial Progenitor Cell (EPC) Pasien Angina Pekoris Stabil yang Diinduksi oleh Faktor Pertumbuhan)
Yudi Her Oktaviono, Djanggan Sargowo, Mohammad Aris Widodo, Yanni Dirgantara,
Angliana Chouw, Ferry Sandra ... 219–226

Analysis of Mean Platelet Volume in Type II Diabetic Patients with Vascular Complication
(Analisis Mean Platelet Volume Pasien Diabetes Melitus Tipe II Komplikasi Vaskuler)
Mustakin, Liong Boy Kurniawan, Nurahmi, Ruland DN Pakasi .. 227–231

The Automatic Microdilution-Broth in Sensitivity Testing of Acinetobacter Baumannii Isolates
(Microdilution-Broth Otomatis dalam Uji Kepekaan Isolat Acinetobacter Baumannii)
Dyah Artini, Osman Sianipar, Umi S Intansari .. 232–236

Interleukin-8 Related with Bone Mineral Density
(Interleukin-8 terhadap Kepadatan Mineral Tulang)
Yurdiansyah Latif, Uling Bahrun, Ruland Pakasi ... 237–240

The Risk Factor of Alloantibody Formation in Thalassemia Patients Receiving Multiple Transfusion
(Faktor Kebahayaan Terbentuknya Aloantibodi pada Pasien Talasemia yang Menerima Transfusi Darah Berulang)
Veronica Fridawati, Teguh Triyono, Usi Sukorini .. 241–245

Specific IgE Immunoblot Method in Allergic Rhinitis
(IgE Spesifik Menurut Metode Imunoblot di Rinitis Alergi)
Izzuki Muhashonah, Aryati, Dwi Reno Pawarti, M. Robi’ul Fuadi, Janti Trihabsari 246–253

Metabolic Syndrome Among Adults in Rural Areas
(Sindrom Metabolik pada Dewasa di Daerah Pedesaan)
Glycated Albumin and HbA1c in Diabetic Nephropathy
(Albumin Glikat dengan HbA1c dan Penyakit Nefropati Diabetik)
Elvan Dwi Widyadi, Jusak Nugraha, Ferdy Royland Marpaung ... 258–262

Small Dense Low Density Lipoprotein with Angiographically Atherosclerosis in Coronary Heart Disease
(Small Dense Low Density Lipoprotein dengan Aterosklerosis Secara Angiografi di Penyakit Jantung Koroner)
Yuliani Zalukhu, Siti Muchayat Purnamaningsih, Nahar Taufik, Suwarso ... 263–267

Total IgG and IgG Anti PGL-I with Duration of Therapy and Reactions of Multibaciller Leprosy
(Jumlah Keseluruhan IgG dan IgG Anti PGL-I Mycobacterium leprae dengan Lama Pengobatan dan Reaksi Kusta Multibasiler)
Endang Retnowati, Halik Wijaya, Indropo Agusni .. 268–273

Factors in Acute Transfusion Reaction
(Faktor Reaksi Transfusi Darah Akut)
Wiwi Payung, Rachmawati AM, Mansyur Arif ... 274–278

Neopterin and CD4+ T-Lymphocytes in Stage I HIV Infection
(Neopterin dan Limfosit T-CD4+ di Infeksi HIV Stadium I)
Harianah, Endang Retnowati, Erwin Astha Triyono .. 279–283

LITERATURE REVIEW
The Role of Platelets SCD40L to Atherogenesis
(Peran sCD40L Trombosit terhadap Aterogenesis)
Liong Boy Kurniawan ... 284–288

CASE REPORT
Multiple Myeloma in a Young Adult
(Mieloma Multipel di Dewasa Muda)
Hendra Rasubala, Agus Alim Abdullah, Mansyur Arif .. 289–292
INTERLEUKIN-8 RELATED WITH BONE MINERAL DENSITY
(Interleukin-8 terkait Kepadatan Mineral Tulang)

Yurdiansyah Latif, Uleng Bahrun, Ruland Pakasi

ABSTRACT
Osteoporosis is one of the causes of disability in elderly females because of the risk of fractures caused by it. Starting at age of 50, the probability of in females is 40%, whereas it is 13% in males. Osteopenic prevalence rate is about 41.7% in Indonesia and the prevalence of osteoporosis is 10.3%. This means that two out of five people are at risk for osteoporosis. Interleukin-8 plays a role in stimulating the synthesis of the Receptor Activator of NF kappa B ligand (RANKL) mRNA in osteoblasts that bind to the receptor RANK on osteoclasts that plays a role in the decline in Bone Mineral Density (BMD). The aim of the study was to know the levels of interleukin-8 and its relationship with normal bone mineral density, osteopenic and osteoporotic by determination. A cross-sectional study was conducted during the period between May 2012-May 2013 using the data of Interleukin-8 levels and bone density in females aged between 30-60 years in Makassar. The data were analyzed and processed using the Anova test. The Interleukin-8 levels were higher than normal in osteoporosis with IL-8 levels in normal BMD 48.72±12.81, osteopenia 55.68±13.75, osteoporosis 62.06±24.45. The correlation between IL-8 levels and bone density in females aged between 30-60 years was statistically significant. Based on this study, it can be concluded that there were significant correlations between elevated levels of IL-8 by reduced bone mass density in females with osteoporosis compared to normal BMD. The researchers advise to follow-up studies to be performed with more attention to the characteristics of Body Mass Index (BMI).

Key words: Interleukin-8, bone mineral density, osteopenic, osteoporosis
INTRODUCTION

The physiological changes that occur in human beings are natural processes. The case is the same for females, who, after entering the age of 40 years, will reach the final stage of the fertile period (climacteric period) or perimenopause. Perimenopause is the period between premenopausal and menopausal changes, characterized by irregular menstrual cycles. The physiological changes that appear most frequently in females is perimenopause/menopause, i.e. defects is in the skeletal system such as osteoporosis. Osteoporosis is a disease characterized by reduced bone mineral density and changes in the microarchitecture of bone tissue, resulting in decreased bone density and increased bone fragility, thus resulting in easily broken bones. The diagnosis of osteoporosis was set based on history, physical examination and examination of bone mineral density. Bone mineral density can be measured using the Dual Energy X-Ray Absorptiometry (DXA) which can measure bone density as well as the central and edge of certain sections of bone throughout the body. This tool has a higher degree of accuracy and is the gold standard examination of the bone density. The measurement of bone density is usually expressed by the T-score, the number of standard deviations the patient's bone density varying from the mean bone in a variety of normal subjects with the same sex.

Osteoporosis is one of the causes of suffering and disability in the elderly because the risk of fracture increases with age. In 2003, WHO recorded that more than 75 million people in Europe, America and Japan have osteoporosis resulting in 2.3 million fracture cases. One in three females and one in five males are at risk of suffering hip or back fractures when entering the age of 80 years. Starting at the age of 50, the probability of fracture is 40% on females and 13% on males. The data analysis of the risk osteoporosis in 2005 conducted by the Center for Nutrition MOH and a nutrition company in 16 regions in Indonesia showed the prevalence of osteopenia (early osteoporosis) of 41.7% and 10.3% of osteoporosis. This means that two out of five citizens has a risk of suffering from osteoporosis. Based on these data, the osteoporosis disease is not only a problem in Indonesia, but it has become a global problem that requires thorough attention. Therefore, it is necessary to know the pathomechanism of osteoporosis in order to support its diagnosis and management.

Osteoclasts and osteoblasts have an important role in osteoporosis due to their function in bone homeostasis. Lucia et al, in his research stated that the immune response plays an important role in osteoporosis, especially in the activation and induction of T lymphocytes that generate Receptor Activator of NF kappaB Ligand (RANKL). Receptor Activator of NF kappaB Ligand, which has been known as a mediator for the interaction of T lymphocytes, also stimulates the maturation and activation of bone resorption. Gur et al, examined for possible associations between serum interleukin-8 (IL-8) in 76 post-menopausal females with osteoporosis, then compared it with cytokines in healthy females. The results of this study showed no increase in serum IL-8 in patients compared to the comparison group.

Interleukin-8 is initially only known as a chemotactic factor for neutrophils. During the inflammatory response, IL-8 is released from the inflamed tissue into the blood which then stimulates neutrophil response. Currently, IL-8 is known as a major factor that stimulates bone destruction and does not merely act as a chemotactic factor. Interleukin-8 stimulates the manufacture of RANKL mRNA in osteoblasts, RANKL being a membrane receptor in osteoblast or stromal cells that bind the receptor RANK on osteoclasts that are instrumental in the destruction of bone or decrease in bone mineral density.

The controversial research and epidemiological data that are lacking in Indonesia, especially in Makassar, the place of study of the relationship between content of IL-8 with decreased bone mineral density, encouraged researchers to determine whether increased content of IL-8 participates in bone destruction associated with decreased bone mineral density of a person. The results were expected to examine the scientific explanation of the levels of IL-8 on bone mineral density in females aged between 30–60 years old, hence can be a reference material to further investigations concerning pathomechanism of the decrease of bone mineral density.

METHODS

The cross-sectional study which was conducted during the period between May 2012–May 2013 by taking the primary data on females aged between 30–60 in Makassar. Samples were females between the ages 30–60 years old who came to the Dr. Wahidin Sudirohusodo Hospital and other educational network hospitals in Makassar. The samples of the study were taken from subjects who did not smoke, drink alcohol and use drugs (steroids, anticonvulsants, estrogen hormones and hormonal contraception), had never
experienced a broken bone before, did not suffer from joint disease (rheumatoid arthritis or SLE), had their test results of liver and kidney function within normal limits, also had normal fasting blood sugar levels, showed no signs of infection in a routine blood test, and willing to be the subject of research by signing a letter of consent.

The subjects who met the participation criteria then had their bone mineral density examined and grouped into normal BMD, osteopenia and osteoporosis in the same number of samples, then had venous blood drawn for routine hematological examination, ALT, AST, urea, creatinine and fasting blood glucose. Insufficient sample volume for analysis such as jaundice and those undergoing hemolysis were excluded from this study. The measurement DMT used General Electric Lunar DPX NT with methods of Dual Energy X-Ray Absorptiometry (DXA) and construed in accordance with the real benchmark using a T-score (normal: T-score > -1, osteopenia: T-score between -1 and -2.5 Osteoporosis: T-score <= -2.5). The content IL-8 was measured by ELISA method using Quantikine Human Interleukin-8 ELISA kit from R & D System and read using microplate reader at a wave length of 450nm with a reference value of 0-60 pg/mL. The data was analyzed and processed statistically with OneWay Anova test.

RESULTS AND DISCUSSION

During the time period of May 2012 to January 2013, 75 samples of research were obtained that met its standards and had passed the examination of bone mineral density and levels of IL-8.

The results indicated the age range examined in the three groups of DMT in the same age range between 30−60 years (see Table 1).

Table 1. Characteristics of the sample by age and bone mineral density

<table>
<thead>
<tr>
<th>Variable</th>
<th>n (%)</th>
<th>Age range (year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group benchmark bone mineral density</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>25 (33.3)</td>
<td>36-59</td>
</tr>
<tr>
<td>Osteopenia</td>
<td>25 (33.3)</td>
<td>30-54</td>
</tr>
<tr>
<td>Osteoporosis</td>
<td>25 (33.3)</td>
<td>32-60</td>
</tr>
</tbody>
</table>

The level of IL-8 occurred increasing as bone mineral density reduction. Results based on data levels interleukin-8 were found to be higher in osteoporosis DMT than in normal and osteopenic DMT.

The oneWay Anova analysis indicated there was a significant association only in the group of females with normal BMD compared to osteoporosis group whose p=0.03 (Figure 1). Meanwhile, no significant relationship was found in the group of females with normal BMD compared with osteopenia (p=0.514) and osteopenic DMT compared with osteoporosis DMT (p=0.628). This was because the levels of IL-8 in both groups were still in the normal range levels IL-8.5

Table 2. The relation between the level of Interleukin-8 with bone mineral density

<table>
<thead>
<tr>
<th>Variable</th>
<th>Levels of IL-8 (pg/mL)</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group benchmark bone mineral density</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>48.72</td>
<td>12.81</td>
</tr>
<tr>
<td>Osteopenia</td>
<td>55.68</td>
<td>13.75</td>
</tr>
<tr>
<td>Osteoporosis</td>
<td>62.06</td>
<td>24.45</td>
</tr>
</tbody>
</table>

* OneWay Anova Test

![Figure 1. Level IL-8 in the normal bone mineral density, osteopenia and osteoporosis (OneWay Anova Test)](image-url)
Immune and inflammatory factors play an important role in the pathophysiology of cardiovascular disease and osteoporosis. One such factor is the RANKL and osteoprotegerin (OPG). Increased expression of RANKL in osteoclast activity and excessive formation may be triggered by an increase in IL-8 which led to a decrease in bone mineral. Receptor Activator of NF kappaB Ligand and OPG are produced by osteoblast precursors. Osteoprotegerin is an inhibitor of osteoclastogenesis by binding to RANKL, making the RANKL not to bind to RANK on the osteoclast. Osteoclastogenesis is regulated by the interaction between RANKL and RANK receptor. RANKL/OPG system activates the formation, function and differentiation of osteoclasts involved in bone remodeling.

Limitations of this study were the sample size that was still small, making the researchers unable to determine the cut off value which could be used to distinguish between normal and osteoporotic DMT.

CONCLUSION AND SUGGESTIONS

The increased levels of IL-8 in line with the decline in DMT, despite significant differences, was just proven between normal and osteoporosis DMT groups. This indicated a role IL-8 to the pathogenesis of osteoporosis. The researchers suggest further studies with a larger number of samples in order to determine the cut off value which could be used to distinguish between normal and osteoporotic DMT.

REFERENCES